

Photos by Peter LaTourrette and PRBO

Predicting The Effects of Climate Change on California Bird Distributions

Diana Stralberg, Dennis Jongsomjit, Chrissy Howell, John Wiens, PRBO; Mark Snyder, UCSC; Terry Root, Stanford University

Climate Change Modeling Outline

1. California terrestrial breeding birds (ongoing)

2. San Francisco Bay marsh birds (preliminary)

Conservation Background

- Conservation planning challenges increase as climate changes
 - Increased conservation urgency
 - Moving conservation targets

 Distribution modeling can help fill information gaps (current and future)

Source: Jeff Price, National Wildlife, Dec/Jan 2003

Project Goals

- Inform bird conservation strategies
 - California Partners in Flight focal species
- Provide statewide picture of potential distribution shifts
- Identify local and regional change hotspots
- Suggest additional research

Species Distribution Models

Spatial Predictions of Occurrence

Maxent and GAMs

Observational Data

Environmental Variables

Bird Data

- Terrestrial breeding birds
 - Point count data (presence/absence)
- 60 CalPIF focal species
 - 5 major habitat types

Climate Data

Current:

PRISM 800-m interpolated weather station data (1970-2000)

Future: Regional Climate Models

NCAR and GFDL projections (A1b, 2080-2099; A2, 2050-2070)

http://www.prism.oregonstate.edu/ (Daly and Phillips 1994, J. Appl. Meteor.)

Scenario A1b, NCAR CSM1.2 40-km RegCM2.5 (Snyder and Sloan 2005, Earth Interactions)

Derived bioclimatic variables:

Mean annual temperature
Mean diurnal range
Isothermality
Temperature seasonality
Mean temp. of warmest quarter
Annual precipitation
Precipitation seasonality
Precipitation of driest quarter

California Climate Change Projections

Current (1970-2000)

Future (2080-2099, IPCC Scenario A1b, NCAR GCM)

California Climate Change Projections

Current (1970-2000)

Future (2080-2099, IPCC Scenario A1b, NCAR GCM)

Vegetation Change

(Random Forest classification algorithm, 72% accuracy)

Individual Species Predictions

Habitat Groups - Conifer Species

Conifer-Associated Focal Species

Oak Woodland Species Change

Oak Woodland-Associated Focal Species

Scrub Species Change

Scrub-Associated Focal Species

Riparian Species Change

Riparian-Associated Focal Species

Wilson's Warbler (Riparian Focal Species)

Current Prediction

Wilson's Warbler (Riparian Focal Species)

Future Prediction

Black-headed Grosbeak (Riparian Focal Species)

Current Prediction

Black-headed Grosbeak (Riparian Focal Species)

Future Prediction

Avian Community Change

Community
Similarity (Current vs. Future)

Avian Community Change

Community
Similarity (Current vs. Future)

Avian Community Change

Community
Similarity (Current vs. Future)

Preliminary Conclusions

- Climate change will result in winners and losers
- Large geographic variability within species
- Large individual species variability within habitats
- Small shifts in individual species can result in large community changes
- Hotspots of climate AND land use change important
- Future species' distributions should be considered in conservation planning

Future Directions

- Synthesize community-level impacts
- Quantify combined effects of climate and land-use change
- Identify species and regions of future concern
- Future gap analysis / conservation priorities
- "Downscale" and refine predictions at regional scale

Regional Scale Models

1. California terrestrial breeding birds (ongoing)

2. San Francisco Bay marsh birds (preliminary)

San Francisco Bay Tidal Marsh

Main drivers:

Species Distribution Modeling Approach

Preliminary models based on inundation and salinity

 Direct effects (flooding, predator exposure) + indirect effects (vegetation change)

- Data inputs:
 - PRBO point count data
 - 10-m elevation data (NED)
 - salinity projections

Preliminary spatial predictions (examples)

Models based on 1-m SLR and increased salinity (projections from N. Knowles) Maxent distribution modeling algorithm (Phillips et al. 2006)

Preliminary spatial predictions (examples)

Models based on 1-m SLR and increased salinity (projections from N. Knowles) Maxent distribution modeling algorithm (Phillips et al. 2006)

Next steps

- Obtain best available inundation and salinity projections for the Bay
- Include range of realistic marsh accretion estimates
- Model dominant plant species distributions + avian responses
- Evaluate influence of levee infrastructure
- Analyze community change, current/future conservation and restoration priorities

Conclusions

- Distribution models useful tools for assessing potential ecological responses to climate change
- Appropriate scale and data inputs are key
- Conservation planning should incorporate effects of climate and land use change

Acknowledgments

California modeling

- Bird Data: Klamath Bird Observatory, Redwood Sciences Laboratory (USFS),
 Breeding Bird Survey (USGS), PRBO terrestrial division staff and interns
- Environmental Data: PRISM Climate Group, California Gap Analysis Project,
 Dave Theobald
- Funding: Anonymous, Fawcett Family Foundation

San Francisco Bay modeling

- Bird Data: PRBO wetland division staff and interns
- Environmental Data: Noah Knowles, USGS
- Collaborators: T. Parker, J. Callaway, M. Kelly, L. Schile
- Funding: San Francisco Foundation

